
Implementing an SPI to APB interface for the Leon CPU

Alex Bolinsky and Jeremy Tang
Washington University in St. Louis, Saint Louis, MO 63130

(Dated: November 6, 2014)

In this paper we present a design and implementation of a general Serial Peripheral
Interface (SPI) bus that enables communication between the processor and the ADC
and DAC onboard the Xilinx Spartan3 FPGA. While the general design of an SPI
peripheral is similar across platforms, the challenge in the design lies with creating an
interface compatible with components with distinct timing requirements. In this case,
the ADC and DAC timing requirements differed from each other, so we needed to
design an interface with these differences in mind. Our solution involved condensing a
timing diagram from the datasheets of both the ADC and DAC, translating the timing
diagram to state machine logic, and implementing the state machine in hardware. In
the end, we were able to design and implement an efficient SPI that properly interfaces
the Leon processor with the ADC and DAC and which supports a sampling rate of
127k samples/sec aggregate, or 63.5k samples/sec per channel. Ultimately this design
for the SPI will play a key role in our overarching design of an audio equalizer.

I. INTRODUCTION

The Serial Peripheral Interface (SPI) bus is a full-
duplex serial link used for short-range communication
between devices. It is a protocol developed by Motorola
that has since become a de facto standard for commu-
nication between master and slave devices in embedded
systems, and is also used by sensors and SD cards. The
SPI protocol consists of only four signals, shown in Fig-
ure 1. SCLK (serial clock) is output from the master de-
vice to the slave device and controls the rate of the data
transfer. MOSI (master output slave input) and MISO
(master input slave output) are the two data transfer sig-
nals, each of which transmits one bit per SCLK cycle. SS
(slave select) is the signal from the master which enables
the slave device for serial data transfer.

A Digital-to-Analog converter, or DAC, is a device
which takes in a digital value as input, and outputs an
analog voltage signal corresponding to the magnitude of
the digital value. They are a key component of digital
music players, which must convert a music files digital
encoding into an analog signal that can be processed by
speakers or headphones. An Analog-to-Digital converter,
or ADC, is the opposite; it takes in an analog voltage
signal and outputs a digital value corresponding to the
amplitude of the analog voltage. Like how a DAC can be
used to playback a digital music file as music, an ADC
can be used to record an analog audio signal into a digital
format, after which the audio can be digitally processed
or saved for future playback.

For this project, our objective was to design a periph-
eral for the Xilinx Spartan3 FPGA to act as a bridge be-
tween the AMBA bus protocol and the SPI protocol, and
use the SPI peripheral to interface the Leon3 processor
with the Spartan3 boards LTC1654 DAC and LTC1865L
ADC. By default, the Leon3 processor has no ability to
communicate with the DAC and ADC. By developing
a SPI peripheral device, the Leon3 could send data to
the peripheral over the AMBA bus, and the SPI periph-

eral could forward the data over SPI bus to the DAC or
ADC. The SPI peripheral could then receive data from
the DAC or ADC, and send the data back to the Leon3.
We used Verilog HDL to design our peripheral, and we
wrote a C program for the Leon3 to test and operate the
peripheral.

FIG. 1. Illustration of two example devices communicating
over the SPI bus.

II. DESIGN

Our design for the SPI and the manner in which it
connects the Leon Processor to both the ADC and the
DAC is illustrated by the high level block diagram in
Figure 2. On the left of the figure, the PSel13 and PSel14
signals are asserted by the Leon Processor to select which
SPI peripheral to write to, PRData13 and PRData14 are
32 bit data lines that the ADC SPI and DAC SPI use to
push data back for the Leon to read, and PWData is a
32 bit data line that the Leon uses to write values to the
SPI peripherals. On the right of the figure we have a
general SPI design where the SPI is the master and the
ADC and DAC are slaves. The master asserts SCK to
clock the slaves, CS to select one of two main states in
the DAC and ADC, and a single bit data line, SDI, to
write data serially to the slave. In our design, the slave
asserts a single bit data line, SDO, to write data serially
back to the SPI master.



2

FIG. 2. High Level Block Diagram of our SPI Peripheral.

A. Timing

Our SPI peripheral was designed to accommodate the
different timing specifications of the ADC and DAC on-
board the Nu Horizons FPGA. The timing diagram used
in designing the state machine is shown in Figure 3. The
processor clock signal is shown at the top, and the four
master-slave signals are below: CS, SDO, SCK, and SDI.
The propagation delay from clock output to the rising
and falling edges of CS and SCK is 0-14ns. There is a
minimum hold time requirement from the falling edge of
SCK to when SDO is valid of 14ns (clock propagation de-
lay) + 8ns (offset from valid to changing SDO signal) +
60ns = 82ns. There is a minimum setup time requirement
from when SDI goes valid to the rising edge of SCK of
66ns 14ns (clock propagation delay) = 52ns. The period
of the processor clock is 33ns, and we designed the high
and low time for SCK to be 3 processor clock periods,
or 99ns each to meet the timing requirements above and
to meet the 100k samples/sec sample rate design speci-
fication. There is a minimum setup time of 99ns (SCK
period) 14ns (clock output propagation delay) = 85ns
between the falling edge of CS and the first rising edge
of SCK, so we designed the first rising edge of SCK to
occur 3 clock periods, or 99ns, after CS goes low. A new
bit from SDI is written from the peripheral a clock tick
after CS goes low or a clock tick after each falling edge
of SCK. Similarly, a new bit from SDO is sent to the SPI
peripheral two clock ticks after the rising edge of SCK.

FIG. 3. Timing Diagram of our SPI Peripheral.

B. State Machine

After determining the timing diagram for the SPI that
works with both the ADC and DAC timing specifications,
designing the state machine was a relatively straightfor-
ward translation of the timing considerations. The state
machine for this SPI can be seen in Figure 4. Given that
the ADC and DAC have two cycles, Load and Convert,
we designed a state machine with three main higher-level
states: Init, where the state machine initially begins or
returns to from a reset or disabling, Convert, where the
state machine enables communication for the ADC or
DAC to complete a conversion cycle, and Talk, where
the state machine enables communication for the ADC
or DAC to complete a load cycle. We designed two initial
states, Init and InitParse.

In Init, the peripheral continually stores the PWData
sent by the Leon. Only if the peripheral receives PSel,
PEnable, and PWrite from the Leon do we progress to
InitParse. If the peripheral received the command from
the Leon to disable, the machine progresses back to Init.
If on the other hand the peripheral is enabled, it stores
the number of bits per sample and the sample rate that
was passed by the Leon, and calculates and stores a
counter based on the sample rate and number of bits
that determines how long our machine allows the ADC
or DAC to stay in its conversion cycle. The calculation
for the counter is as follows:

Counter = clkrate−samplerate−6∗BitsPerSample∗
samplerate

If the SPI peripheral is interfacing with the ADC, the
number of bits/sample is 16, and if the SPI is interfacing
with the DAC, the number of bits/sample is 24, according
to the LTC1654 and LTC1865L data sheets. The ADC
Load cycle should take 16 (bits) * 6 (processor clock ticks
per SCK period) / 30MHz = 3.2 microseconds. If we
want a sample rate of 50k samples/sec aggregate, then
the total time for a load cycle + a conversion cycle should
take 1/50000 = 20 microseconds. Therefore, in the case
of the ADC, the length of the conversion cycle should
be 20 microseconds 3.2 microseconds = 16.7 microsec-
onds. After the counter is set, and the values from the
Leon have been stored, our machine enters the first of
the conversion states. The state machine enters Con-
vertReady, lowers the ready signal to be sent back to the
Leon, and remains here while decrementing the counter
by the sample rate until the Leon asserts a write to send
the peripheral a new sample. If the Leon does not send
a new sample before the counter finishes, the state ma-
chine calculates a new counter based on the number of
bits/sample and progresses to Talk0 to initiate the Load
cycle. By design, this results in a dropped sample, but it
prevents the machine from introducing delays that would
alter the sample rate that we specified. If the CPU con-
trolling communication to the Leon is fast enough, we
expect a new sample to always be written before the



3

FIG. 4. State Machine of our SPI Peripherall.

counter finishes. If the SPI does receive a sample be-
fore the counter finishes, the machine progresses to the
Convert state. In this state the SPI peripheral stores the
data previously sent from the Leon into SDI Data. If
the counter is not finished, the counter is decremented
and the machine progresses to ConvertWait. The ma-
chine loops in this state, decrementing the counter, until
the counter finishes. In any of the Convert states, when
the counter finishes, a new counter is calculated based
on the number of bits/sample, the peripheral asserts CS
low, SCK low, and progresses to Talk0 to start the load
cycle.

The last collection of states we designed for the state
machine include Talk0 to Talk5, six states that control
the Load cycle of the ADC or DAC. We chose to imple-
ment this in six states instead of one in order to break
down the sequence of timing events by individual clock
ticks, which simplified the design process. Based on the
number of bits/sample passed to the Leon prior, the
machine will loop through these six states either 16 or
24 times for a full Load cycle, and then return to Con-
vertReady to begin the next conversion cycle. In these
six states we control SCK (low for three clock ticks, high
for three clock ticks) by asserting SCK high in Talk2 and
SCK low in Talk5. In Talk0, we write a single bit selected
by the counter to SDI and progress to Talk1. Nothing
occurs in Talk1 and we progress to Talk2. In Talk2 we
assert SCK high and progress to Talk3. Nothing occurs
in Talk3 and we progress to Talk4. In Talk4 we read a
single bit from SDO and store it in its proper ordered
place in a register within SPI denoted by the counter,

and we progress to Talk5. In Talk5, we assert SCK low.
If the counter is not finished, we progress to Talk0 and
continue the cycle, but if the counter is finished, we set
the counter to the previously calculated value determin-
ing the duration of the convert cycle, we assert ready
back to the Leon in order to allow a new sample to be
written to the peripheral, raise CS high, and progress to
ConvertReady to begin the next conversion cycle.

C. Hardware Implementation

Finally, with our timing diagram translated to a state
machine, we implemented the conceptual model in hard-
ware. The simplified block diagram of the SPI peripheral
itself is shown in Figure 5. The hardware implementation
was mostly a direct mapping of the state machine logic
to Verilog. Of interest to note is the way that we inter-
preted data received by the peripheral from the Leon via
PWData and data sent from the peripheral to the Leon
via PRData. We parsed data sent from the Leon to the
SPI as follows: If loading the sample rate and number
of bits/sample: bit 31 = enable signal, bit 30 = disable
signal, bits 29..22 = dont care, bits 21..5 = sample rate
(up to 100000), and bits 4..0 = number of bits/sample. If
specifying control and address bits to the DAC or ADC:
bits 31..24 = don’t care, bits 23..20 = control bits, bits
19..16 = address bits, bits 15..0 = don’t care. Similarly,
we parsed data sent to the Leon from the SPI as fol-
lows: bit 31 = ready signal, bit 30 = enabled signal,
bits 29..25 = current state, bit 24 = dont care, and bits



4

FIG. 5. Simplified Block Diagram of our SPI Peripheral.

23..0 = SDO Data, or the converted sample. The bits for
the enabled signal and the current state exist for debug-
ging purposes, but do not have any cost associated with
keeping them in the final design. In hardware, we tied
the PRData output directly to these signals and regis-
ters with assign statements in order to make data always
available to be read by the Leon. In addition, to simplify
the code, we designed the reset conditional within the
synchronous block to be the logical OR of the Reset
signal coming from the Leon and StoredPWData[30] ==
1, which is the signal to disable the peripheral.

III. OPERATION AND TESTING

A. Testing in simulation using ModelSim

To test our implementation, we created a custom
simulation-only copy of our Top file, called ”Tiptop,”
in which we instantiated our APBBusMaster and two
instances of our SPI peripheral while removing all
synthesis-only code. Additionally, we connected Tiptop
to Ross Williamson’s ADC tester and DAC tester devices,
which we had downloaded from the ”Useful Documents”
section of the course website, and then connected the
ADC tester and DAC tester each to an instance of our
SPI peripheral. With this setup, we were able to write
simulated APB bus calls in APBBusMaster to PSel13
and PSel14, allowing us to interface with an SPI periph-
eral handling the ADC tester and an SPI peripheral han-
dling the DAC tester, respectively.

To test how our SPI peripheral interfaced with the
DAC tester, we wrote the code in our APBBusMaster to
write out the ENABLE command on PSel14. This EN-
ABLE command also contained the sample rate parame-
ter and the bits-per-sample parameter, which were set to
50000 samples/second aggregate and 24 bits/sample, re-

spectively. Upon enabling our peripheral, we then wrote
the DAC commands to set both DAC channels to FAST
mode. We then wrote out 1000 instances of the hexadec-
imal word ”dead” to each DAC channel, for 2000 total
writes. Finally, we sent the DISABLE command to our
peripheral. After each command to the ADC or DAC,
we paused the APBBusMaster code with a while loop to
wait for our peripheral to output the Ready bit before
proceeding to write out the next command.

sin(x/25000 ∗ 500 ∗ 2π) (1)

To test how our SPI peripheral interfaced with the
ADC tester, we first had to supply the ADC tester with
data to write to our peripheral. We used Microsoft Ex-
cel to generate 1000 points of a 500Hz sine wave at
25000 samples/second, using the equation above. We
then transformed the sine wave to have a range from 0
to 65535, converted the resulting numbers to four-digit
hexadecimal numbers, and then copied the resulting hex-
adecimal numbers into a text file to be read by the ADC
tester. Our APBBusMaster command sequence was sim-
ilar to the command sequence we used with the DAC
tester, with a few key differences. First, our ENABLE
command set the peripheral to read/write 16 bits per
sample, instead of 24. Second, we did not send com-
mands for FAST mode to our peripheral as the ADC
does not have such a mode. Third, instead of writing
”dead”, we wrote the ADC commands to make the ADC
tester record a sample from one of the two ADC chan-
nels, and at the same time passing it back to the Leon as
PRData.

We used ModelSim to simulate our design and verify
our timing before we implemented the design in hard-
ware. With an aggregate sample rate of 50000 sam-
ples/second and a clock rate of 30MHz, we expected our
peripheral to have 30 ∗ 106 ÷ 50000 = 600 clock cycles in



5

between samples. With ModelSim, we verified that our
SPI peripheral for the DAC tester enabled and disabled
correctly, that each write to the DAC tester wrote 24
bits, that the DAC tester received the data word dead
after each sample write, and that the total number of
clock cycles in between sample writes was 600 clock cy-
cles. Thus, we verified that our SPI peripheral design
worked correctly with a DAC in simulation.

Similarly, we verified that our SPI peripheral for the
ADC tester enabled and disabled correctly, that each
write to and read from the ADC tester was 16 bits, and
that the total number of clock cycles in between sam-
ple reads was 600 clock cycles. Additionally, we checked
and confirmed that data delivered from the ADC tester
to the SPI peripheral was being written out to PRData
and read by the APBBusMaster, and we also printed out
the integer representations of the data read from the SPI
peripheral. We then compared the printed data to our
input sine wave data, and found the integer values to
all be identical, thus confirming that our SPI peripheral
design worked correctly with an ADC in simulation.

B. Testing in hardware using the Leon

To test our implementation in hardware, we wrote a C
program for the Leon that communicated with our two
SPI peripherals using the APB bus. The SPI periph-
eral handling our ADC could be accessed by reading and
writing to memory address 0x800000d00, and the SPI pe-
ripheral handling our DAC could be accessed by reading
and writing to memory address 0x800000e00. Our ob-
jectives were to use our SPI peripherals to write a sine
wave to our DAC and to read 25000 samples of data from
our ADC. In order to write a sine wave to our DAC, we
first needed to prepare data points for a sine wave. We
used Microsoft Excel to generate 2500 points of a 500Hz
sine wave, or 100ms worth of data at 25000 samples per
second, using the equation that we had previously used
to test the ADC in simulation. We then took the hex-
adecimal conversion of the sine wave samples and stored
them into an int array of size 2500.

Our C code was modeled after our APBBusMaster
code, in that after every command we waited for the
peripheral to output a high ready bit before writing the
next command. We easily detected if the ready bit was
high or not by taking advantage of 2s complement; if the
ready bit was high, the int value of the SPI peripherals
output would be negative, else the output would be pos-
itive. Thus, after sending a command, we waited for the
peripherals output to become negative before moving on
to the next command.

To test our SPI peripheral with the DAC, we needed to
output the 2500 digital samples of our 500Hz sine wave
through the DAC. We first sent the command to disable
the associated SPI peripheral to reset it and ensure it
was in the Init state and not elsewhere due to a garbage
write by the Leon upon initially starting up. We then

sent the ENABLE command, along with the parameters
for 50000 samples per second and 24 bits per sample. The
next command sent was the DAC command to set both
DAC A and DAC B to fast mode. We then constructed
a for loop that iterated through the sine wave array load-
ing DAC A then DAC B with the same sine wave value
per iteration through the loop. For 2500 digital samples,
we expected to see the DAC output data onto the oscil-
loscope for 100ms. We connected probes to the DAC A
and DAC B terminals on the board and used the analog
signal and timing on the oscilloscope to verify that our
output was correct.

To test our SPI peripheral with the ADC, we passed
a 50Hz sine wave to the ADC from a tone generator,
recorded 25000 samples of the wave per channel, and
printed 1000 samples to the console window. We first
sent the command to disable the associated SPI periph-
eral to reset it and ensure it was in the Init state and not
elsewhere due to a garbage write by the Leon upon ini-
tially starting up. We then sent the ENABLE command,
along with the parameters for 50000 samples per second
and 16 bits per sample. We then constructed a for-loop
that iteratively wrote data from ADC channel 0 into an
array while sending the command to convert the analog
signal in ADC channel 1, then wrote data from ADC
channel 1 into another array while sending the command
to convert the analog signal in ADC channel 0. This
for-loop ran 25000 times, for a total of 25000 samples
per channel being read and stored into arrays. We then
printed 1000 data points from each array to the console,
for later analysis.

To test if we were recording correct voltages from
the ADC, we used our test boards potentiometers to
send constant voltages to the ADC. By connecting the
ADC inputs to the oscilloscope and by adjusting the
potentiometers, we verified that our ADC has a maxi-
mum range of 3.3V. We then adjusted the potentiome-
ters such that ADC channel 0 had a 1.0040V input and
ADC channel 1 had a 2.0094V input. We then ran our
C code and output the recorded digital values to the
console window. Using Microsoft Excel, we extracted
the hexadecimal data output and converted it to in-
teger. Since the ADC output 16-bit values, we could
transform the digital signal to its corresponding volt-
age signal by multiplying each data value by the con-
stant 3.3/65536. By doing so, we saw that our device
recorded an average voltage of 1.0696V from ADC chan-
nel 0, and an average voltage of 1.9359V from ADC
channel 2. The percent error for ADC channel 0 was
(1.0696 − 1.0040)/1.0040 = 6.534%, and the percent er-
ror for channel 1 was (2.0094−1.9359)/2.0094 = 3.658%.
Considering the imperfectness of our ADC device and
the amount of electrical noise likely present in our sys-
tem, we figured that the discrepancy between our actual
ADC input and our recorded ADC input was reasonable.



6

FIG. 6. Oscilloscope reading of our actual input voltages to
the ADC channels.

FIG. 7. Excel graph showing the recorded input voltages to
the ADC channels.

After verifying that the SPI works with the ADC and
DAC individually, we wanted to bring everything to-
gether. In order to allow our C code to keep up with our
SPI peripherals, we disabled the two peripherals together
and enabled the ADC SPI immediately after enabling the
DAC SPI. We did this to keep both SPIs in sync as much
as possible and to allow the CPU to wait for the ADC
SPI to become ready instead of both peripherals. After
setting the DAC to fast mode, we made the Leon enter
an infinite loop where we endlessly performed the follow-
ing: send command to read from ADC channel 1, wait
for ADC to become ready, write data from ADC channel
1 to DAC A and then send the command to read from
ADC channel 0, wait for ADC to become ready, then
write data from ADC channel 0 to DAC B. A full cycle
of the DAC and ADC can be seen in Figure 8 With this
sequence of commands, we could play music from a lap-
top through the ADC analog input and be able to hear
the music come out of the DAC analog output through
computer speakers. A comparison between the original
signal input and the output from the DAC can be seen
in Figure 9.

FIG. 8. Oscilloscope output showing a full cycle of the DAC
and ADC. For reference, D0 is PWrite, D1 is PEnable, D2
is PSel13, D3 is PSel14, D4 is Reset , D5 is PRData13[31]
(ready), D6 is PRData14[31] (ready), D7 is SPI DAC CLK
(SCK), D8 is SPI DAC MOSI (SDI), D9 is SPI DAC MISO
(SDO), D10 is DAC LD (CS), D11 is SPI AD SDI (SDI), D12
is SPI AD SDO (SDO), D13 is AD CONV ST (CS), D14 is
SPI AD SCK (SCK), and D15 is a half processor clock signal.

FIG. 9. Oscilloscope output comparing the input signal to
the ADC with the output signal from the DAC. Notice how
the output signal has a much lower sampling rate than the
source signal.

We verified the correctness of our C code and our pe-
ripherals behavior in multiple ways. First, when sending
the 500Hz sine wave data to our DAC, we simply listened
to the speaker output of our DAC and audibly compared
the sound to a 500Hz sine wave generated from a lap-
top, and concluded that the sounds had identical pitch.
Second, we output 250 samples of the sine wave onto the
oscilloscope and used the cursors to verify that 10ms of
time elapsed from the beginning of the wave to the end,
which can be seen in Figure 10.



7

FIG. 10. Oscilloscope output of our DAC reading 250 samples
of 500Hz sine wave. The output of the two channels of the
DAC differ by 1.65V due to one channel driving 0-3.3V and
the other driving 0-1.65V.

Third, we took the 1000 data samples from our ADC
and plotted them. These plots can be seen in Figure 11.
For a 50Hz sine wave at 25000 samples a second, we ex-
pected 25000/50 = 500 samples to occur in between each
period of the wave, or for 1000 samples to occur for 2
periods. From the output from our ADC, we can con-
firm that exactly two periods of the wave elapsed during
those 1000 samples, meaning that our ADC SPI periph-
eral collected samples at the correct frequency and did
not miss any of the 1000 samples that it collected. Addi-
tionally, we modified our C code to play back the 25000
collected samples through our DAC, and were unable to
notice any audible difference between the output sound
and the original 50Hz sound.

FIG. 11. Excel plot of 1000 data points of a 50Hz sine wave
captured from our ADC.

Fourth, we used the Test pins on the Spartan board to
output the SPI signals onto the oscilloscope in order to
verify that the timing of the digital signals was correct
and that no samples were being dropped or written more
than once. To do this, we used the oscilloscope cursors
to measure with a high degree of resolution (on the order
of hundredths of a nanosecond) the time between subse-
quent falling edges of CS for both the ADC and the DAC.
A sample rate of 50k samples/sec translates to 1/50000
sec/sample, which is 20 microseconds. We verified that
the time between subsequent falling edges of CS for both
the DAC and ADC in most samples was 20 microseconds,
which can be seen in Figure 12. Interestingly, we did ob-
serve a small delay of 5 nanoseconds between signals in
about 1/6 of the samples. This delay appeared not just
with CS but with all of the signals associated with the
two SPIs, however the delay did not necessarily manifest
itself in every signal for a particular sample. It is impor-
tant to note that this delay does not cause the ADC and
DAC cycles to become out of sync with each other, and
after a long detailed timing analysis of a long stretch of
samples on the oscilloscope, we found that this delay was
not causing any samples to be dropped or be duplicated.

FIG. 12. Oscilloscope showing exactly 20us between falling
edges of CS (D10).

To glean more insight into the possible sources of this
delay, we added a Test signal that represented half of the
processor clock. The delay was not a result of any errors
on our part, as any timing mistakes in our state diagram
would result in delays on the order of a clock period, or
33ns, so we suspected an issue with the clock signal that
the Leon was sending to our peripheral. We triggered the
scope on the pulse width of CS and observed a jittering
of the half processor clock signal, which is very strange.
Our best assessment as to the source of the delay is a
fluctuation of the power supply voltage to the FPGA
board, but further testing is required before conclusions
can be drawn.



8

FIG. 13. Oscilloscope seemingly showing 20us between falling
edges of CS (D10).

FIG. 14. Oscilloscope output showing that the time between
CS (D10) falling edges is actually 20.005us; a 5ns delay.

FIG. 15. Oscilloscope output showing jitter in the CS signal
(D13) and our half-clock signal (D15).

IV. DISCUSSION/CONCLUSIONS

We designed and successfully implemented a general
SPI in hardware and verified that the design was able
to sustain a sample rate of 25k samples/sec per each of
two audio channels (50k samples/sec aggregate). Theo-
retically, the maximum sample rate our design is able to
support is limited by ADC. The minimum time required
for the ADC convert cycle is 4.66us, and the ADC load
cycle takes 6 (clock ticks) * 16 (bits/sample) / 30MHz
= 3.2 microseconds. So our hardware can support 1 /
(3.2us + 4.66us) ≈ 127k samples/second, aggregate, or
63.5k samples/sec per channel. Ultimately, the only bot-
tleneck that prevented sampling at such a high rate dur-
ing testing was the speed of the CPU used to run the code
that communicated to the Leon. For example, we tested
a sample rate of 88.2k samples/sec aggregate, which is
CD quality, and found many instances of lost samples
due to the inability of the CPU to catch up to hardware
operations. This bottleneck will vary depending on the
CPU used to communicate with the Leon processor, but
our hardware is well designed to ensure it meets the base
specification of a sample rate of 50k samples/sec aggre-
gate.

We have discerned that our design is sufficiently well
built for its application within the audio equalizer, but
we acknowledge that a couple of modifications could be
made to minorly improve performance. The first mod-
ification would be to consolidate the init and initParse
states into a single state to save a clock cycle, simplify
the finite state machine, and potentially make for more
readable verilog. The second modification would be to
consolidate and simplify the convert states so as to re-
duce the logic and again simplify the finite state machine
and improve readability. These consolidations proved dif-
ficult and time-consuming to implement.

This project required us to become familiar with and
learn a significant number of concepts and skills. We
learned the mechanisms behind the ADC and the DAC,
and we spent a good deal of time digging deep in the
bowels of datasheets for the two components, which was
the most in-depth either of us had probed into hardware
documentation. We became familiar with general SPI
protocol and learned how to design an interface between
two components with incompatible timing. Additionally,
we became more adept at working the oscilloscope by
learning to use the probes and how to manipulate and
view analog signals, and we learned how to trigger on a
pulse width, which proved useful in debugging and accu-
rately measuring the delays between signals.

V. CITATIONS AND REFERENCES

en.wikipedia.org/wiki/Serial Peripheral Interface Bus
Wikipedia article on the Serial Peripheral Interface

https://www.sharelatex.com/templates/journals/aps



9

LaTeX template used to format this report.

http://cds.linear.com/docs/en/datasheet/1654fb.pdf
LTC1654 DAC datasheet by Linear Technology

http://cds.linear.com/docs/en/datasheet/18645lfs.pdf
LTC1864L ADC datasheet by Linear Technology


